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Magnetic structure at zigzag edges of bilayer ribbons
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We study the edge magnetization of bilayer graphene ribbons with zigzag edges. The presence of flat edge-state bands at
the Fermi energy of undoped bilayer, which gives rise to a strong peak in the density of states, makes bilayer ribbons
magnetic at the edges even for very small on-site electronic repulsion. Working with the Hubbard model in the Hartree Fock
approximation we show that the magnetic structure in bilayer ribbons with zigzag edges is ferromagnetic along the edge,
involving sites of the two layers, and antiferromagnetic between opposite edges. It is also shown that this magnetic
structure is a consequence of the nature of the edge states present in bilayer ribbons with zigzag edges. Analogously to the
monolayer case, edge site magnetization as large as m=0.2 pg (per lattice site) even at small on-site Hubbard repulsion

U=0.3 eV is realized in nanometer wide ribbons.
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1. Introduction

Graphene, the two dimensional allotrope of carbon,
has recently been attracting a great deal of attention. Since
its isolation three years ago [1] a plethora of unusual and
interesting properties has been revealed [2,3].From the
point of view of fundamental physics, low-energy quasi-
particles in graphene behave like massless Dirac fermions
propagating at an effective velocity of light Vz106ms_2. A
rather unusual physics is then observed, where the half-
integer quantum Hall effect is a paradigmatic
example [4,5] Graphene is also regarded with great
expectations from the point of view of technological
applications. Stability and ballistic transport on the
submicrometer scale, even at room-temperature, make
graphene based electronics a promising possibility.

The possibility of creating stacks of graphene layers
with the accuracy of a single atomic layer, providing an
extra dimension to be explored, is another advantage of
graphene for electronic applications. Of particular interest
to us is the double layer of graphene — the bilayer. Bilayer
graphene has shown to have unusual electronic properties,
though unexpectedly dissimilar to those exhibited by its
single layer parent. The new type of integer quantum Hall
effect observed in bilayer grapheme [6,7] which is induced
by chiral parabolic bands, is an example of its uniqueness.
From the point of view of applications, bilayer graphene is
even more promising for some electronic devices. It has
recently been shown that the band structure of bilayer
graphene can be controlled externally by an applied
electric field so that an electronic gap between the valence
and conduction bands can be tuned in a controllable way
[8-10]. This makes the bilayer graphene the only known
semiconductor with a tunable energy gap and may open
the door for potential applications on atomic-scale
electronic devices [11].

Among the uncommon features of monolayer
graphene we find the rather different behavior of the two
possible (perfect) terminations: zigzag and armchair.
While zigzag edges support localized states, armchair
edges do not [12-14]. These edge states occur at zero
energy, the same as the Fermi level of undoped graphene,
meaning that low energy properties may be substantially
altered by their presence. The self-doping phenomenon
[15], the edge magnetization with consequent gap opening
in graphene nanoribbons [16], and half-metallicity [17] are
examples of edge states driven effects.

The presence of zero energy edge states at zigzag
edges of bilayer graphene has recently been confirmed
assuming a first nearest-neighbor tight-binding model
[18]. Two families of edge states has been found to coexist
in the bilayer: monolayer edge states, with finite amplitude
on a single plane; and bilayer edge states, with finite
amplitude on both planes, and with an enhanced
penetration into the bulk. As in single layer graphene,
bilayer edge states show up in the electronic spectrum as
flat bands at zero energy — the Fermi energy of undoped
bilayer. These non-dispersive bands gives rise to a strong
peak in the density of states right at the Fermi energy,
which brings about the question of spontaneous magnetic
ordering due to electron-electron interactions.

In the present paper we study the magnetic structure
of zigzag bilayer graphene ribbons induced by electron-
electron interactions, which are included through the
Hubbard model. Working within the Hartree Fock
approximation we show that due to the presence of edge
states, which induce a strong peak in the density of states
at the Fermi energy, zigzag bilayer ribbons show edge
magnetization even for very small on-site electronic
repulsion. Moreover, it is shown that the spin
configuration is ferromagnetic along the edge, with
parallel spins occurring on both layers, and
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antiferromagnetic between opposite ribbon edges. Such a
magnetic ordering can be interpreted as being a
consequence of the edge state structure in bilayer
graphene.

The paper is organized as follows: in Sec. we present
the model and the mean field decoupling used here; for a
better interpretation of our results we review briefly in
Sec. the edge states for non-interacting zigzag bilayer
ribbons; in Sec. we present and discuss the results of this
work; we close with conclusions in Sec. .

2. Model and field treatment

The study of the magnetic structure in AB-stacked
bilayer graphene given here is based on the ribbon
geometry with zigzag edges shown in Fig.0.1. We use
labels1 and2 for the top and the bottom layers,
respectively, and labels Ai and Bi for each of the two
sublattices in layeri. Each four-atom unit cell
(parallelograms in  Fig.0.1) has integer indices
m (longitudinal) and n (transverse) such that ma, +na, is

its  position vector, where alza(l,O) and

a,=a(l,~ \J3)2
the lattice constant. The simplest model one can write to

describe non-interacting electrons in AB-stacked bilayer is
the first nearest-neighbor tight-binding model given by,

are the basis vectors and a~2.46A is

2
HTB: Z HTB,i+HL' Q)
i=

with,

Higi =—tY a, (mn)b, (m,n)+[b, (m-1,n)+

b, ,(m,n-1]+hc. )
H, =-t,> a; (m,n)b,(mn)+hc., ®)

where a cj(m,n) [bi cj(m,n) ] is the annihilation

operator for the state in sublattice Ai (Bi), i=1,2, at position
(m,n), and spin o=T{. The first term on the right hand
side of Eq. (1) describes in-plane hopping, t=2.7eV, while
the second term parametrizes the inter-layer coupling,
t. /t <1. In order to examine the magnetic polarization
due to electron-electron interactions we add the Hubbard
term to Eq.1. The total Hamiltonian describing the bilayer
system reads,

H=H

T8*HU “)

where HU represents the on-site Coulomb interaction,

Hy :UZZ: > [aif_(m,n)ai'_(m,n)aiff(m,n)ai;(m,n)

i=1 mn

+ b/ (m,n)b,_(m,n)b~(m,n)b;-(m,n) ]
®)

The Hubbard model is a good starting point to study
magnetism whenever the density of states at the Fermi
energy is large enough to produce effective screening of
the Coulomb interaction. This is true for the clean bilayer,
where a finite density of states at the neutrality point
produces some amount of screening in the system [19]. It
is certainly the case in the presence of zigzag edges, where
the density of states peak at the Fermi energy implies very
effective screening.

T
m+l  m+2

m1 m
Fig. 0.1. Ribbon geometry with zigzag edges for bilayer
graphene.

The system Hamiltonian in Eq. (4) is treated here
within  mean-field theory. In the Hartree Fock
approximation the mean-field version of Eq. (4) reads,

MF
Hve=HreHy ©)

with

2

1 US S [ e a0,

i=1l m,n,s

N7 g (bl (b (mn) | @

where A~ (m,n) is the electronic density for spin

Ti,o
=T at the site of sublattice '=A,B and layer i=1,2 of the
cell (m,n). The electronic spin densities ﬁl"i G(m,n)

have to be determined self-consistently through,

N™ pei s (M,N) = <aiTU(m’ ma . (m, n)>MF ®)

N" g5 (m,0) = (bl (m,n)b, ,(m,n)) ©)

MF

VE is done with the mean-field

Hamiltonian in Eq. (6). Quantum fluctuations, which are
ignored within mean-field theory, are expected to reduce
the magnetic moments but not to change significantly the
overall magnetic structure. As a further approximation we

where the average < >
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assume that the self-consistent solution of Egs. (8) and (9)
is m independent, i.e.,

1
n” A*i,s (m1 n) =n" A*i,s (n) = EZ n- A*i,s (m, n) (10)

N g (ML D) = Ny () = %2 N s (M), (A1)

where L is the longitudinal ribbon length. We can justify
this approximation here because we are mainly interested
on the study of edge magnetization when edge states are
present, and, as we will see in Sec. Ill, edge states are
homogeneous along the edge. Note, however, that we keep
the sublattice index in Egs. (10) and (11), meaning that we
can still have in-cell inhomogeneity.

Without loss of generality we assume that the ribbon in
Fig. 0.1 has N unit cells in the transverse cross section (y
direction) with ne{0,...,N-1}, and we use periodic
boundary conditions along the longitudinal direction (x
direction). Noting the translational invariance of the ribbon
along the x direction, and having Egs. (10) and (11) in
mind, it is easy to diagonalize Hamiltonian (6) with
respect to the m index just by Fourier transform along the

longitudinal direction, H= )’ Hk, with Hk given by,
k

MF
Hk'HTB,k+HU,k' 12)
where,

HTB,k =

—ti Zai,o(k, n[@+e*)b, , (k,n)+b,  (k,n-1)]

i=1 no
-t, > a/, (k,n)b,  (k,n)+hc (13)
and, '
M*E 2 N t
HU,k:U _Z Z[”A*i,—c(n)ai,c(k‘n)ai,c(k’n)
i=1 n,c
N g s (n)biTs (k,n)b; ; (k,n) ] (14)

with self-consistent spin densities given by Egs. (10)
and (11), which can be rewritten as,

N s (M) = (al, (M2, (k) (15)
N g (N) = (b1, (K, by, (K1), (16)
All conclusions presented in Sec. regarding the magnetic

structure of zigzag bilayer ribbons are drawn by solving
Egs. (12-16).

3. Edge states in the non-interacting limit

It is shown in Sec IV. that the results for the edge
magnetization of zigzag bilayer ribbons are a consequence
of the edge state structure found in(f#3 system [18]. In this
section we briefly review the main features of bilayer edge
states for U=0 in Eq.(4), i.e., in the absence of interactions.

fet ik’
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Fig. 0.2. (Color online) (a) - Energy spectrum for a
graphene bilayer ribbon with zigzag edges for N=400.
(b) - Zoom in of panel (a). (c) - Charge density of the
edge states at k/27=0.36. (d) - The same as in (c) at
k/27=0.364. The interlayer coupling was set to tl/t=0.2

in all panels.

The band structure of a bilayer ribbon with zigzag
edges is shown in Fig. 0.2 (a) for N=400, obtained by
numerically solving Eq. (13). We can see the partly flat
bands at E=0 for k in the range 2n/3<ka<4n/3,
corresponding to four edge states, two per edge. The zoom
shown in Fig. 0.2 (b) for ka~2n/3 clearly shows that there
are four flat bands.

In order to understand the spatial structure of edge
states in bilayer graphene we solve the Schrddinger
equation, HTB,k'“’k >E“,k|p.,k > , for E“,k:O ,
where p labels the eigenstate index including spin. First
we note that Hamiltonian(if* B k in Eq. (13) effectively
defines a 1D problem in the transverse direction of the
ribbon. It is then possible to write any eigenstate |uk > as

a linear combination of the site amplitudes along the cross
section

[e; (k,n)|ak,n, o)+ B (k,n)|b; k,n,o)]

k) =2

2
i=1

17

where the four terms per n refer to the four atoms per unit
cell, to which we associate the one-particle states
=a

Kl i,G'bi,G '
spin o=T,{, and i=1,2. To account for the finite width of
the ribbon we require the following boundary conditions,

cpkno :ciT%(k,n) |0> . with ¢
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g (kN)=ay(k N)=B (k~1)=p,(k ~1)=0. (18)

After solving the Shrédinger equation for zero energy and
the boundary conditions in Eq. (18) we find four possible
eigenstates per k, where the only nonzero coefficients for
each of them are given by [18]:

a,(k,n) =0
—iﬁn (19)
a,(k,n) = &, (k,0)De 2
e,
a,(k,n) =a,(k,0)D,/e 2
R 2
az(k,n)z—al(k,O)Dk“‘ltTle 2! l)(n— D, ]

1- D}
(20)
ka_,
Bi(k,n) = B,(k,N -1)De ? 1)
B,(k,n)=0
vty ik—;(n'—l) . D?
fuk.n) = f,(k N D[ et (- =)
k
ka _,
By (k,n) = B,(k, N -1)Dj'e 2"
22)

where Dk:—ZCos(kaJZ) and

n'e{0,...,.N-1}. As is easily seen, the coefficients in
Egs. (20-26) give convergent wave functions only if
2n/3<ka<4n/3, in which case they represent zero energy
states localized at the surface — edge states —and provide
an explanation for the four flat zero energy bands in
Fig. 0.2 (a) and (b). Note, however, that the solutions given
by Egs. (20-26) are exact eigenstates only for semi infinite
systems, where the boundary conditions given in Eq. (18)
are fully satisfied. In a finite ribbon overlapping of the
four edge states leads to a slight dispersion and non-
degeneracy. Nevertheless, as long as the ribbon width is
sufficiently large, this effect is only important at ka~2n/3
and ka~4n/3 where the localization length is large enough
for the overlapping to be appreciable [14]. For
completeness we give the normalization constants
appearing in Egs. (20-26),

n=N-n'-1, with

la,kOP=B (N-D  =1-D}, (23)
, , (1—D§)3
0y (OB, N-DP =55 (28)

(1-D)>+t 1t

An example of the charge density associated with
Eg. (22) is shown in panels (c) and (d) of Fig.0.2 for

t L/t:0.2, where the |oc1(k,n)|2 dependence can also be

seen as the solution given by Eq. (20) for |(>(2(k,n)|2 ,

apart from a normalization factor. Of particular interest to
understand the magnetic structure due to interaction
effects is the fact that edge states in zigzag bilayer
graphene are such that at one edge they live only on
sublattice A whereas at the opposite edge they live on
sublattice B.

(20)

I £aTa )Y

Fig. 3.
M=Npi, 770
parameter U for different ribbon widths N. The shown
magnetizations were computed at sites n=0, n=1, and at
the middle of the ribbon. Solid lines are for the upper
layer (i=1) and dashed lines for the bottom layer (i=2).
The result for graphite double sheet (bulk bilayer) is also
shown.

Dependence  of the  magnetization
, with i=1,2, on the interaction

4. Results and discussion

In Fig.3 the results for the local magnetization
m:ﬁAi T_ﬁAi ! , for i=1,2, are shown as a function of

the Hubbard parameter U for different ribbon widths N.
For each ribbon width we have computed the local
magnetization at sites of the A sublattice belonging to cells
n=0, n=1, and right at the middle of the ribbon (see
Fig. 0.1). The first conclusion we can draw is that sites
near the edge get polarized even for very small U, while
sites in the middle of the ribbon behave like bulk
bilayer [20]. Another interesting feature shown in Fig. 3 is
that at the considered edge the magnetization of A2 sites is
larger than that of Al sites, an asymmetry that vanishes
away from the edge. We will come back to this below. As
regards the B sublattice its magnetization (not shown in
Fig. 3) is always similar to the bulk result even right at the
edge (n=0). However, when we move to the opposite edge,
the A and B sublattices change roles: B sites at the opposite
edge get polarized for very small U while A sites show the
bulk result. The conclusion then is that edge magnetization
involving different sublattices at opposite edges is
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showing up in zigzag bilayer ribbons, even for very small
U. In particular we get sz.ZpB right at the edge for

U=0.1t~0.3eV, similar to what is found in graphene [12].
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Fig. 0.4. (Color online) Magnetization

m=nn’ ?‘“n,J along the ribbon cross section for

the 7i=A1,A2,B1,B2. Three different ribbon widths were
considered: N =50, 200, 400 from top to bottom. The
interaction parameter was set to U=0.1t.

A better understanding of the edge magnetization is
achieved by fixing U and plotting the local magnetization
m:ﬁri T_ﬁri ! across the ribbon section for

I'i=A1,A2,B1,B2. This is done in Fig.0.4 for different
ribbon widths and for a fixed interaction parameter
U=0.1t. As is clearly seen, for such a small interaction
only the edges are polarized. Moreover, the edge
magnetization is opposite on opposite  edges —
antiferromagnetic arrangement across the ribbon. Also,
we can see that at the edge starting with cell n=0 only
sublattice A has a finite magnetization, whereas at the
opposite edge only sublattice B has non-vanishing
magnetization. Finally, it is also apparent that at each edge
the non-zero sublattice magnetization has same sign in
both layers — ferromagnetic arrangement along the edge.
These observations are consistent with first-principles
density-functional calculations of the magnetic structure of
graphitic fragments (infinite number of layers) [21].

We have seen in Sec.lll that bilayer edge states have
the following property: at the edge starting with n=0 they
live only on sublattice A, while at the opposite edge they
live only on sublattice B, as given by Egs. (20-26). The
above results for the edge magnetization may therefore be
attributed to the polarization of edge states in order to
reduce on-site Coulomb energy. This interpretation also
provides an explanation for the layer difference in local
magnetization. As mentioned before, it can be seen in
Fig. 3 that the magnetization at A2 sites is higher than at
Al sites for the edge starting with n=0. If we recall
Egs. (20) and (22) for the wave function amplitudes at the

considered edge we immediately see that while the two
edge state families contribute to A2 only one has finite
amplitude at Al sites. The same is true for B1 and B2 sites,
in agreement with Egs. (24) and (26). As regards the
antiferromagnetic polarization between edge states living
in opposite edges, it guarantees a ground state with zero
total magnetization, as it is known to be the case for the
half-filled Hubbard model.

Finally we note that edge magnetization gives rise to a
finite gap at the Fermi level, in complete analogy to
monolayer graphene [16]. Half-metallicity has been
predicted for zigzag single layer ribbons due to the edge
magnetization and the presence of a finite gap [17]. We
expect that bilayer ribbons also become half-metallic, with
an extra switching capability owing to the effect of a
perpendicular electric field [9,10].

5. Conclusions

We have studied the edge magnetization in bilayer
graphene ribbons with zigzag edges. The presence of flat
edge-state bands at the Fermi energy of undoped bilayer,
which gives rise to a strong peak in the density of states,
makes bilayer ribbons magnetic at the edges even for very
small on-site electronic repulsion. Using the Hubbard
model in the Hartree Fock approximation we have shown
that the magnetic structure in bilayer ribbons with zigzag
edges is ferromagnetic along the edge, involving sites of
the two layers but belonging to the same sublattice, and
antiferromagnetic between opposite edges and involving
sites of different sublattices. This magnetic structure is a
consequence of the nature of the edge states present in
bilayer ribbons with zigzag edges.
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